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Abstract—Marangoni convection, which is induced by the variation of the surface tension with temperature along a surface,
influences crystal growth melts and other processes with liquid–vapor interfaces, such as boiling in both microgravity and in normal
gravity in some cases. This paper presents a similarity solution for Marangoni flow over a flat surface for both the momentum
equations and the energy equation assuming a developing boundary layer along a surface. Solutions are presented for the surface
velocity, the total flow rate and the heat transfer for various temperature profiles and various Prandtl numbers. The analysis also
shows how the heat transfer variation with Prandtl number changes for Prandtl numbers from much less than one to much greater
than one. For large bubbles, the predicted boundary layer thickness would be less than the bubble diameter, so the curvature effects
could be neglected and this analysis could be used as a first estimate of the effect of Marangoni flow around a vapor bubble.  2001
Éditions scientifiques et médicales Elsevier SAS
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Nomenclature

a, d , h exponents in similarity transformation

A temperature gradient coefficient . . . . K·m−(k+1)

C1 similarity transformation coefficient . . ma

C2 similarity transformation coefficient . . s·m(k−4)/3

f (η) stream function similarity variable
k temperature gradient exponent

ṁ mass flow rate per unit width . . . . . . kg·m−1·s−1

m correlation coefficient
n correlation coefficient
Ma Marangoni number, equation (13)
Nu Nusselt number, equation (24)
Pr Prandtl number
q′′ heat flux . . . . . . . . . . . . . . . . . W·m−2

Re Reynolds number, equation (16)
T temperature . . . . . . . . . . . . . . . K
u, v velocities . . . . . . . . . . . . . . . . . m·s−1

x, y coordinates . . . . . . . . . . . . . . . . m

Greek symbols

∗ Correspondence and reprints.
E-mail addresses: dmc@tsinghua.edu.cn (D.M. Christopher),

bxwang@tsinghua.edu.cn (B. Wang).

α thermal diffusivity . . . . . . . . . . . . m2·s−1

δ boundary layer thickness . . . . . . . . m
η location similarity variable
ηδ dimensionless momentum boundary layer

thickness
ηt dimensionless thermal boundary layer

thickness
λ thermal conductivity . . . . . . . . . . . W·m−1·K−1

µ dynamic viscosity . . . . . . . . . . . . N·s·m−2

ν kinematic viscosity . . . . . . . . . . . m2·s−1

θ temperature similarity variable
ρ density . . . . . . . . . . . . . . . . . . kg·m−3

σ surface tension . . . . . . . . . . . . . . N·m−1

ψ stream function . . . . . . . . . . . . . m2·s−1

Subscripts

L average over surface length
x local value

1. INTRODUCTION

Marangoni flow induced by surface tension variations
along a liquid surface causes undesirable effects in crystal
growth melts in the same manner as buoyancy-induced
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natural convection [1]. These undesirable effects also
occur in space-based crystal growth experiments since
Marangoni flow occurs in microgravity as well as in earth
gravity. Boiling tests in microgravity have shown that the
effect of Marangoni flow is significant in microgravity
and may be important in earth gravity as well [2, 3].

The numerous investigations of Marangoni flow in
various geometries have been reviewed in the litera-
ture [4, 5]. Some of the papers most relevant to this work
include the order-of-magnitude analysis of Marangoni
flow given by Okano et al. [6] that gave the general
trends for the variation of the Reynolds number with the
Grashof number, Marangoni number, and Prandtl num-
ber. Hirata and his co-workers experimentally and nu-
merically investigated Marangoni flow for various sub-
stances in geometries with flat surfaces relevant to this
work [4, 6, 7]. Arafune and Hirata [8] presented a simi-
larity analysis for just the velocity profile for Marangoni
flow that is very similar to this derivation but the re-
sults are effectively limited to surface tension variations
that are linearly related to the surface position. Slavtchev
and Miladinova [9] presented similarity solutions for sur-
face tension that varied as a quadratic function of the
temperature as would occur near a minimum. Schwabe
and Metzger [10] experimentally investigated Marangoni
flow on a flat surface combined with natural convection
in a unique geometry where the Marangoni effect and the
buoyancy effect could be varied independently.

This paper presents a similarity solution for Maran-
goni flow over a flat surface due to an imposed tem-
perature gradient. For an interface with evaporation or
condensation at the surface, the temperature distribution
along the interface is primarily a function of the va-
por temperature and the heat transfer coefficient rather
than the Marangoni flow. For example, Christopher and
Wang [3] showed that the calculated temperature distri-
bution in a vapor bubble attached to a surface and in the
liquid surrounding the bubble was primarily due to the
heat transfer through the vapor rather than in the liquid re-
gion and the temperature variation along the surface was
not linear but could be described by a power-law function
as proposed here.

The objective of this analysis is to develop a simplified
analysis of the temperature distribution along a surface
with an imposed temperature distribution which would
most likely be due to evaporation and condensation at the
interface. The analysis assumes that the surface tension
varies linearly with temperature but the temperature
variation is a power-law function of the location. In
addition, the analysis assumes that a boundary layer
develops along the surface due to the coupled Marangoni

flow. The results for the heat transfer are then correlated
as a function of Prandtl number. The analytical results
can also be used to evaluate numerical solutions of
the complete Navier–Stokes and energy equations for
boundary conditions that meet the specified conditions.

2. THEORETICAL ANALYSIS

Unlike the Boussinesq effect in buoyancy flow, the
Marangoni effect acts as a boundary condition on the
governing equations for the flow field. For laminar
boundary layer flow over a flat plate, the Navier–Stokes
equations can be reduced to the continuity equation and
the boundary layer momentum equation [4]:

∂u

∂x
+ ∂v

∂y
= 0 (1)

u
∂u

∂x
+ v ∂u

∂y
= ν ∂

2u

∂y2 (2)

The boundary layer energy equation is

u
∂T

∂x
+ v ∂T

∂y
= α∂

2T

∂y2 (3)

The corresponding boundary conditions at the surface are

µ
∂u

∂y

∣∣∣∣
y=0

=− dσ

dT

∂T

∂x

∣∣∣∣
y=0

v(x,0)=0

T (x,0)=T (0,0)+Axk+1

(4)

Far from the surface, the boundary conditions are

u(x,∞)= 0 (5a)

T (x,∞)= T∞ = T (0,0) (5b)

Using the standard definition of the stream function,
similarity variables can be introduced as

η=C1x
dy

f (η)=C2x
aψ(x, y)

θ(η)= (T (x, y)− T (0,0))x
h

A

(6)

so the governing equations can then be written as

f ′′′ =f ′2(d − a)+ aff ′′

θ ′′ =Pr
(
af θ ′ − hf ′θ

) (7)
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where the coefficients are defined as

C1 = 3

√
(dσ/dT )Aρ

µ2

C2 = 3

√
ρ2

(dσ/dT )Aµ

(8)

For similarity, the exponents are related to k in equa-
tion (4) by

d= k − 1

3

a= −2 − k
3

h=−1 − k

(9)

The momentum equation boundary conditions are

f (0)=0

f ′′(0)=−1

f ′(∞)=0

(10)

The energy equation boundary conditions are

θ(0)=1

θ(∞)=0
(11)

The surface velocity is given by

u(x,0)= 3

√
((dσ/dT )A)2

ρµ
f ′(0)x(2k+1)/3 (12)

The temperature gradient coefficient can be defined in
terms of the total temperature difference along a surface
of length L as A= T /Lk+1 so the Marangoni number
can then be defined for a general temperature profile as

MaL = (dσ/dT )( T/Lk+1)Lk+2

µα

= (dσ/dT ) T L

µα
(13)

The Reynolds number defined in terms of the surface
velocity is then related to the Marangoni number as

ReL = u(x,0)L

ν
= f ′(0)Ma2/3

L Pr−2/3 (14)

The total mass flow in the boundary layer per unit width
is given by

ṁ=
∫ ∞

0
ρu dy = 3

√
dσ

dT
Aρµx(k+2)/3f (∞) (15)

which can be written in dimensionless form as

Rex = ρūδ

µ
= f (∞)Ma1/3

x Pr−1/3 (16)

The similarity transformation used here for the mo-
mentum equation differs in several ways from that used
by Arafune and Hirata [8]. Besides slightly different defi-
nitions of the similarity variables, the most important dif-
ference is that the present derivation is based on a general
form of the temperature variation on the surface. The re-
sults of Arafune and Hirata [8] are only useful for a linear
variation of the surface tension with location. The current
derivation is also extended to include the energy equa-
tion.

The similarity analysis is based on the boundary layer
equations which assume that the transverse derivatives of
the velocity and temperature are much larger than their
axial derivatives and that the axial velocity is much larger
than the transverse velocity. Analysis of the similarity
transformation shows that both are true if

C1L
(k+2)/3 = 3

√
(dσ/dT )AρLk+2

µ2

= Ma1/3
L Pr−1/3 
 1 (17)

The numerical results can be used to show that the
boundary layer assumptions hold within the momentum
boundary layer for MaL/Pr> 106 and for k ≤ 2.

3. RESULTS AND DISCUSSION

3.1. Similarity results

The governing equations (7) were solved numerically
using the fourth-order Runge–Kutta method with at least
20 000 steps. The shooting method was used to determine
the unknown boundary conditions at η= 0, f ′(0) for the
momentum equation and θ ′(0) for the energy equation.
The maximum value for the independent variable η,
which was a function of the Prandtl number, was always
chosen to be at least 4 times the maximum boundary layer
thickness. The minimum value that could be used for the
momentum equation was η= 20 which was sufficient for
the energy equation for Prandtl numbers greater than 2.
For Prandtl numbers less than 2, the thermal boundary
layer thickness and, hence, the maximum value of η
were much greater. The results presented in the following
section were all independent of the number of steps and
the maximum value of η.
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Figure 1. Velocity and temperature profiles for k = 0.

Figure 2. Variations of surface velocity, boundary layer thick-
ness and flow rate for various temperature gradient exponents.

The similarity stream function f is a function of the
exponent k, while the temperature function θ is a function
of both k and the Prandtl number. The governing equa-
tions (7) were solved subject to the boundary conditions
in equations (10) and (11) for various values of k and Pr.
Typical velocity and temperature profiles are given in fig-
ure 1 for several representative values of the Prandtl num-
ber and for k = 0 which is a linear surface temperature
profile. The thickness of the thermal boundary layer in-
creased with increasing Prandtl number as expected.

The variations of the surface velocity, the boundary
layer thickness and the total flow rate in the boundary
layer are given as functions of k in figure 2, of which
k = 0 refers to a linear profile, k = 1 is quadratic, while
k = −0.5 would be a temperature variation relative to the
square root of x . The minimum value of k is −1, which

Figure 3. Comparison of experimental results from [7] with the
predicted surface velocities.

would result in no temperature variation on the surface
and, thus, no Marangoni flow. The momentum boundary
layer thickness was defined as usual as the point where
the velocity is 1 % of the surface velocity. The velocity
for small values of k is greater because for a fixed total
temperature difference across the surface, the profile for
a small value of k is steeper near the leading edge which
provides more flow. For larger values of k, the slope of
the temperature profile is larger near the trailing edge
where the boundary layer is thicker and the additional
acceleration of the flow has less effect. The mass flow rate
follows the same trend. The boundary layer thickness is
greatest for the uniformly increasing temperature profile,
k = 0. For k greater than or less than 0, the temperature
profile over part of the plate is relatively flat, so the flow
does not accelerate much in that region and the boundary
layer does not grow. The similarity solution could be used
to calculate the Marangoni flow over a curved surface
if the boundary layer thickness, which varies from 3 to
5 for the range in figure 2 and is 4.79 for the linear
temperature profile, is small compared to the curvature.
The temperature distribution along the bubble surface
calculated by Christopher and Wang [3] varied rapidly
at first and then more slowly along a curve that could be
described by equation (4) with k ≈ −0.9. Therefore, the
results presented here could be used at least as an initial
estimate of the boundary layer effect due to Marangoni
flow around a vapor bubble in some cases.

The surface velocities are compared to the velocities
measured by Arafune et al. [7] for gallium and indium
in a shallow pool in figure 3. The similarity results agree
well with the measured velocities for indium. Okano et
al. [6] showed that the Reynolds number should vary
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as the two-thirds root of the Marangoni number for
large Reynolds numbers. The similarity and experimental
results agree with their analysis that the surface velocity
should vary as the two-thirds root of the temperature
difference. The measured velocities for gallium do not
agree as well with the analysis and do not seem to
vary as the two-thirds power of the temperature perhaps
due to the buoyancy effects and the effect of the entire
recirculating flow field in the pool.

3.2. Prandtl number effects

Two representative temperature profiles for k = 0
and small Prandtl numbers are shown in figure 4. The
similarity results are compared with an approximate
analysis of the energy equation for small Prandtl numbers
where the thermal boundary layer thickness is much
greater than the momentum boundary layer thickness.
Therefore, over most of the domain, f ′(η) is equal to zero
and f (η) is equal to f (∞) so the energy equation given
in equation (7) can be approximated by

θ ′′ = Pr af (∞)θ ′ (18)

The solution of equation (18) subject to the boundary
conditions given in equation (11)

θ(η)= e−Pr((k+2)/3)f(∞)η (19)

is compared to the similarity solution in figure 4. The
temperature gradient at the surface for small Prandtl

Figure 4. Temperature distributions for small Prandtl numbers
for k = 0.

numbers would then vary as

θ ′(0)= −Pr

(
k + 2

3

)
f (∞) (20)

Therefore, for small Prandtl numbers the surface temper-
ature gradient would be expected to be proportional to the
Prandtl number for a given surface temperature variation.

For large Prandtl numbers, the thermal boundary
layer thickness is much thinner than the momentum
boundary layer thickness, so the energy equation can be
approximated by assuming that f (η) is essentially zero
and that f ′(η) is essentially f ′(0) for small η. Therefore,
for large Prandtl numbers, the energy equation can be
approximated by

θ ′′ = Pr(k + 1)f ′(0)θ (21)

which has the solution

θ(η)= e−√
Pr(k+1)f ′(0) η (22)

The surface temperature gradient for large Prandtl num-
bers would then be approximated by

θ ′(0)= −√
Pr(k + 1)f ′(0) (23)

The variation of the surface temperature gradient as
a function of the Prandtl number and the temperature
gradient exponent is shown in figure 5 for a wide
range of Prandtl numbers. The slope of the curve on
the logarithmic axes is equal to one for small Prandtl
numbers and is equal to 0.5 for large Prandtl numbers.
Equation (23) for large Prandtl numbers coincides with
the full similarity solution for Pr> 10, but equation (20)
for small Prandtl numbers is somewhat less than the

Figure 5. Surface temperature gradient for various conditions.
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similarity solution even for Pr = 0.001, figure 5. The
error in equation (20) is because the assumptions on the
values of f (η) and f ′(η) for small Prandtl numbers are
not accurate near the surface; therefore, the value of the
surface temperature gradient predicted by equation (20)
is not accurate although the form of the equation is
correct.

The local Nusselt number is

Nux = q ′′(x)x
λ(T (x,0)− T (x,∞))

= −C1θ
′(0)x(k+2)/3 (24)

For small Prandtl numbers, the Nusselt number is

Nux = −Ma1/3
x Pr−1/3

(
x

L

)(k+2)/3

θ ′(0)

∝ Ma1/3
x Pr2/3

(
x

L

)(k+2)/3k + 2

3
f (∞) (25)

For large Prandtl numbers, the Nusselt number is

Nux = −Ma1/3
x Pr−1/3

(
x

L

)(k+2)/3

θ ′(0)

∝ Ma1/3
x Pr1/6

(
x

L

)(k+2)/3√
(k + 1)f ′(0) (26)

Therefore, the slope of the Nusselt number is propor-
tional to the two-thirds power of the Prandtl number for
small Prandtl numbers and is proportional to the one-
sixth power of the Prandtl number for large Prandtl num-
bers as the thermal boundary layer becomes thinner than
the velocity boundary layer. In addition, the coupling of
the temperature and flow fields means that the exponent k
and the values of f (η) and f ′(η) are functions of the
Marangoni and Prandtl numbers which will introduce ad-
ditional Marangoni and Prandtl number effects.

4. CONCLUSIONS

Marangoni flow has been analyzed for boundary layer
flow over a flat surface with an imposed temperature
gradient. The governing equations were solved using
a similarity analysis applicable to both linear and non-
linear temperature gradients. For a liquid pool heated at
both ends, the surface temperature gradient would only
be expected to be linear for very low Prandtl number
fluids where the conduction in the fluid is much greater
than the convection heat transfer. The predicted surface
velocities agree well with measured values for a shallow
pool of liquid indium [7]. The numerical results show

that the boundary layer assumptions hold within the
momentum boundary layer for MaL/Pr > 106 and for
k ≤ 2.

The velocity and temperature field distributions are
given by the results for boundary layer flow with power-
law variations of the surface temperature gradient. Equa-
tions are given for the surface velocity, the total mass
flow rate and the heat flux at the interface as functions
of the Marangoni, Prandtl and Reynolds numbers, the ex-
ponent k and the location. For k = 0, the analysis agrees
with previous results for a linear temperature gradient [6]
that the Reynolds number based on the surface velocity
varies as the two-thirds power of the Marangoni num-
ber. The variation of the temperature gradient at the sur-
face is given for a wide range of Prandtl numbers. For
small Prandtl numbers, the analysis shows that the Nus-
selt number is proportional to the two-thirds power of
the Prandtl number. For large Prandtl numbers, the Nus-
selt number is proportional to the one-sixth power of the
Prandtl number.

The results can also be used to calculate the Marangoni
flow and the resulting heat transfer for flow over curved
surfaces when the curvature is much greater than the
boundary layer thickness. The predicted temperature pro-
file along the bubble interface for a vapor bubble in a liq-
uid pool with condensation and evaporation at the inter-
face [3] could be described with a power-law variation of
the temperature as described in this paper. The analytical
results can also be used as an analytical solution to eval-
uate numerical solutions of the complete Navier–Stokes
and energy equations for boundary conditions that meet
the specified conditions.
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